Embedbase
Embedbase is a single API to access both LLMs and a VectorDB*
Key features
- Generate: use 
.generateText()to use 5+ LLMs - Semantic Search: use 
.add()to create a list of semantically searchable information and.search()to run semantic queries 
Quickstart
Here's a small example to do a simple Q&A search app:
import { createClient } from 'embedbase-js'
// initialize client
const embedbase = createClient(
  'https://api.embedbase.xyz',
  '<grab me here https://app.embedbase.xyz/>'
)
 
const question =
  'im looking for a nice pant that is comfortable and i can both use for work and for climbing'
 
// search for information in a pre-defined dataset and returns the most relevant data
const searchResults = await embedbase.dataset('product-ads').search(question)
 
// transform the results into a string so they can be easily used inside a prompt
const stringifiedSearchResults = searchResults
  .map(result => result.data)
  .join('')
 
const answer = await embedbase
  .useModel('openai/gpt-3.5-turbo-16k') // or google/bison
  .generateText(`${stringifiedSearchResults} ${question}`)
 
console.log(answer) // 'I suggest considering harem pants for your needs. Harem pants are known for their ...'Checkout the .add() documentation to see how to populate the dataset.
Installation
npm i embedbase-jsLearn more
| Section | Description | 
|---|---|
| SDKs documentation (opens in a new tab) | The Embedbase JS and Python SDKs | 
| Examples (opens in a new tab) | Try some examples |